Efficient yet Robust Privacy Preservation for MPEG-DASH-Based Video Streaming

Author:

Cranfill Luke1ORCID,Kim Jeehyeong2ORCID,Lee Hongkyu1ORCID,Kemmoe Victor Youdom1ORCID,Cho Sunghyun3ORCID,Son Junggab1ORCID

Affiliation:

1. Information and Intelligent Security Lab, Kennesaw State University, Marietta, GA 30060, USA

2. Korea Electronics Technology Institute, Seongnam-si, Gyeonggi-do 13509, Republic of Korea

3. Department of Computer Science and Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea

Abstract

MPEG-DASH is a video streaming standard that outlines protocols for sending audio and video content from a server to a client over HTTP. However, it creates an opportunity for an adversary to invade users’ privacy. While a user is watching a video, information is leaked in the form of meta-data, the size of data and the time the server sent the data to the user. After a fingerprint of this data is created, the adversary can use this to identify whether a target user is watching the corresponding video. Only one defense strategy has been proposed to deal with this problem: differential privacy that adds sufficient noise in order to muddle the attacks. However, that strategy still suffers from the trade-off between privacy and efficiency. This paper proposes a novel defense strategy against the attacks with rigorous privacy and performance goals creating a private, scalable solution. Our algorithm, “No Data are Alone” (NDA), is highly efficient. The experimental results show that our scheme is more than two times efficient in terms of excess downloaded video (represented as waste) compared to the most efficient differential privacy-based scheme. Additionally, no classifier can achieve an accuracy above 7.07% against videos obfuscated with our scheme.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3