Simulation of Steady-State Temperature Rise of Electric Heating Field of Wireless Sensor Circuit Fault Current Trigger

Author:

Zhao Yinan12ORCID,Zhuang Jinwu1,Ye Zhihao1,Qian Zhiliang2,Peng Fang2

Affiliation:

1. College of Electrical Engineering, Naval University of Engineering, Wuhan, 430033 Hubei Province, China

2. Wenzheng College of Soochow University, Suzhou, 215000 Jiangsu Province, China

Abstract

This article analyzes the structure of the wireless sensor circuit, considering the balance of power consumption, integration, area, noise, etc., and adopts a radio frequency wireless sensor circuit with a low-IF structure. Through the analysis and comparison of traditional analog current trigger and digital current trigger structure, the feed-forward current trigger structure is selected, which is composed of received signal strength indicator (RSSI) and variable gain amplifier (VGA), which achieves low power consumption, fast stabilization time, and wide dynamic range design. The received signal strength indicator adopts the form of approximate logarithmic amplifier, five-stage double feedback loop structure, and realizes lower power consumption. In order to prevent the load current trigger from entering the speed saturation zone, a gain unit structure in which the superimposed current trigger is connected to the NMOS tube as the load is proposed. The test results show that the circuit has a good power consumption performance (1 mW) and at the same time 56.8 dB/m sensitivity. In this paper, through the analysis of the current trigger system and the analysis and comparison of the existing variable gain amplifiers, the variable gain amplifier structure composed of the folded wireless sensing unit and the index control unit is adopted. In order to reduce the power consumption of the circuit and increase the output swing, a structure in which the two-stage folding wireless sensor unit shares the controlled voltage-to-current part of the circuit is proposed. Aiming at the design requirements of the system, this article discussed in detail the architecture of the entire temperature measurement node and the design parameters of the chip and completed the overall architecture design of the chip. The simulation results of the steady-state temperature rise of the electric heating field show that the circuit has achieved an input dynamic adjustment range of more than 60 dB, the maximum power consumption is 1 mW, and the linearity error is less than 0.5 dB. The designed automatic gain control circuit is implemented in SMIC 0.18 cape CMOS process. The simulation results of the steady-state temperature rise of the electric heating field show that the circuit has a 56 dB input dynamic adjustment range within a linear error of 1.25 dB, and the time constant is 7.55 ms, and power consumption is 2.84 mW. Through the steady-state temperature rise simulation and test results of the electric heating field, the correctness of the design is verified and it meets the system requirements.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3