Experimental and Numerical Investigation on Basic Law of Dense Linear Multihole Directional Hydraulic Fracturing

Author:

Zhang Xin1ORCID,Zhang Yuqi1ORCID

Affiliation:

1. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Using the dense linear multihole to control the directional hydraulic fracturing is a significant technical method to realize roof control in mining engineering. By combining the large-scale true triaxial directional hydraulic fracturing experiment with the discrete element numerical simulation experiment, the basic law of dense linear holes controlling directional hydraulic fracturing was studied. The results show the following: (1) Using the dense linear holes to control directional hydraulic fracturing can effectively form directional hydraulic fractures extending along the borehole line. (2) The hydraulic fracturing simulation program is very suitable for studying the basic law of directional hydraulic fracturing. (3) The reason why the hydraulic fracture can be controlled and oriented is that firstly, due to the mutual compression between the dense holes, the maximum effective tangential tensile stress appears on the connecting line of the drilling hole, where the hydraulic fracture is easy to be initiated. Secondly, due to the effect of pore water pressure, the disturbed stress zone appears at the tip of the hydraulic fracture, and the stress concentration zone overlaps with each other to form the stress guiding strip, which controls the propagation and formation of directional hydraulic fractures. (4) The angle between the drilling line and the direction of the maximum principal stress, the in situ stress, and the hole spacing has significant effects on the directional hydraulic fracturing effect. The smaller the angle, the difference of the in situ stress, and the hole spacing, the better the directional hydraulic fracturing effect. (5) The directional effect of synchronous hydraulic fracturing is better than that of sequential hydraulic fracturing. (6) According to the multihole linear codirectional hydraulic fracturing experiments, five typical directional hydraulic fracture propagation modes are summarized.

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3