Numerical Investigation on Turbulent Flow and Heat Transfer of Helium-Xenon Gas Mixture in a Circular Tube

Author:

Zhou Biao1ORCID,Zhang Han1ORCID,Ji Yu1ORCID,Sun Jun1ORCID,Sun Yuliang1ORCID

Affiliation:

1. Institute of Nuclear and New Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084, China

Abstract

Gas-cooled space nuclear reactor system usually utilizes the helium-xenon gas mixture as the working fluid. Since the typical helium-xenon mixture has the Prandtl number of about 0.2, which is lower than that of water and air, the turbulent flow and heat transfer features need to be further investigated among the helium-xenon mixture and other fluids. In the current paper, numerical investigations by ANSYS Fluent are performed on helium-xenon mixture flow (HeXe40, M = 40.0 g/mol, Pr = 0.21), airflow (Pr = 0.71), and water flow (Pr = 6.99) in the circular tube. Direct numerical simulation results of liquid metal flow (Pr = 0.01) are also adopted for comparison. Results show that the dimensionless velocity profile and shear stress in the boundary layer of HeXe40 are close to those of other fluids. The empirical correlations from other fluids can also predict well the friction factor of helium-xenon mixtures. Due to the discrepancy in turbulent heat diffusivity ratio, the dimensionless radial temperature profile and turbulent heat conduction of HeXe40 significantly differ from those of other fluids. The molecular conduction region of HeXe40 develops up to y+ ≈ 30 and extends to the logarithmic region of the flow boundary layer. Moreover, the available experimental Nusselt numbers of helium-xenon mixtures are compared with several convective heat transfer correlations, in which Kays correlation is better.

Funder

CNSA Program

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3