Research on Electrical Conductivity and Mechanical Properties of Ecological Concrete Prepared from Mine Solid Waste

Author:

Ren Zhenhua1ORCID,Peng Yifeng1,Chen Xi1,Zeng Hao1,Zeng Xiantao1ORCID

Affiliation:

1. Hunan Provincial Key Laboratory of Intelligent Disaster Prevention-Mitigation and Ecological Restoration in Civil Engineering, Hunan Institute of Engineering, Xiangtan 411104, China

Abstract

Conductive concrete with nanographite–cupric nickel sulfate ore was prepared in this paper. As a new type of multifunctional multiphase conductive building material with conductive, electrothermal, electromagnetic shielding, piezoresistive properties, etc., nanographite–cupric nickel sulfate ore conductive concrete will have a wide range of applications in snow melting, electromagnetic shielding, cathodic protection and structural health monitoring, and other fields. In this paper, different dosage of nanographite and cupric nickel sulfate ore admixture that the mixture was excited by alkali excitation, ultrasonic vibration and combined alkali excitation and ultrasonic vibration, respectively were used to study the electrical conductivity and mechanical properties of conductive concrete, 36 groups of nanographite–cupric nickel sulfate ore conductive concrete specimens and seven groups of comparative specimens were cured for 28 days, and the unconfined compression test, three-point bending test, and electrical conductivity test were carried out. The results show that the electrical conductivity and mechanical properties of the specimens with 6% nanographite and 60% cupric nickel sulfate ore were the best, with the compressive strength, flexural strength and resistance reaching 40.83 MPa, 6.81 MPa, and 5,850 Ω·cm, respectively. Compared with the comparative specimens, the compressive strength and the flexural strength of the specimens are increased by 38.5% and 20.4%, respectively, and the resistivity is decreased by 55.7%. This shows that the alkali excitation-ultrasonic vibration activation method can not only improve the electrical conductivity of nanographite–cupric nickel sulfate ore conductive concrete pavement but also ensure the stability of its mechanical properties.

Funder

Hunan Key Laboratory of Intelligent Disaster Prevention and Mitigation and Ecological Restoration in Civil Engineering

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference32 articles.

1. PengB.Modification and its physicochemical property of molten steel slag2016Beijing, ChinaUniversity of Science and TechnologyDoctor’s Thesis

2. Research status of conductive concrete;W. Li;Oil and Gas Field Surface Engineering,2006

3. Research on China’s market-oriented emission reduction mechanism to achieve carbon neutral long-term goals;Z. X. Wen;Environmental Protection,2021

4. LinY.A study on the preparation and properties of activated slag cementitious materials2010Zheng Zhou UniversityMaster’s Thesis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3