Exploring the Anticonvulsant Activity of Aqueous Extracts of Ficus benjamina L. Figs in Experimentally Induced Convulsions

Author:

Singh Rajinder1,Khalid Mohammad2ORCID,Batra Nikhil3,Biswas Partha45ORCID,Singh Lovedeep6ORCID,Bhatti Rajbir1ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India

2. Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia

3. Department of General Medicine, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar Deemed to be University, Ambala, India

4. Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh

5. ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh

6. University Institute of Pharma Sciences, Chandigarh University, Mohali 140413, Punjab, India

Abstract

Background. Ficus benjamina L. is an evergreen tree, native to Southeast Asia, and often known as a weeping fig. Its latex and fruit extracts are used by indigenous cultures to cure skin conditions, inflammation, vomiting, leprosy, malaria, and nasal ailments. The aqueous extract of the figs of Ficus benjamina L. has various therapeutic values, including biological activities on the central nervous system. Materials and Methods. The extract of the dried figs of Ficus benjamina L. (FBE) was prepared by defatting with petroleum ether for 16 h followed by soxhelation with 70% methanol (1 : 10 w/v) for 24 h, and standardization of the extract was carried out using HPLC with 5-HT as a standard. Electroconvulsions were induced by the maximal electroshock model, and chemoconvulsions were induced by picrotoxin. Results. The HPLC chromatogram of the Ficus benjamina L. extract showed an absorption peak with a retention time of 1.797 min, similar to that observed with standard serotonin (5-HT) solution. In the maximal electroshock model, FBE significantly reduced the duration of the tonic hind limb extensor and extensor-to-flexor ratio (E/F ratio) in a dose-dependent manner. Moreover, in the picrotoxin-induced seizure model, FBE increased the seizure latency and decreased the duration of tonic-clonic convulsions dose-dependently. We confirmed the anticonvulsant activity of the FBE extract as it attenuated both maximal electroshock and picrotoxin-induced convulsions. Conclusion. The in vivo studies revealed that the Ficus extract was found to protect the animals in electroshock-induced and picrotoxin-induced convulsions.

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3