Discrete Bird Swarm Algorithm Based on Information Entropy Matrix for Traveling Salesman Problem

Author:

Lin Min12ORCID,Zhong Yiwen12ORCID,Lin Juan1,Lin Xiaoyu1

Affiliation:

1. College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Key Laboratory of Smart Agriculture and Forestry (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian Province 350002, China

Abstract

Although bird swarm optimization (BSA) algorithm shows excellent performance in solving continuous optimization problems, it is not an easy task to apply it solving the combination optimization problem such as traveling salesman problem (TSP). Therefore, this paper proposed a novel discrete BSA based on information entropy matrix (DBSA) for TSP. Firstly, in the DBSA algorithm, the information entropy matrix is constructed as a guide for generating new solutions. Each element of the information entropy matrix denotes the information entropy from city i to city j. The higher the information entropy, the larger the probability that a city will be visited. Secondly, each TSP path is represented as an array, and each element of the array represents a city index. Then according to the needs of the minus function proposed in this paper, each TSP path is transformed into a Boolean matrix which represents the relationship of edges. Third, the minus function is designed to evaluate the difference between two Boolean matrices. Based on the minus function and information entropy matrix, the birds’ position updating equations are redesigned to update the information entropy matrix without changing the original features. Then three TSP operators are proposed to generate new solutions according to the updated information entropy matrix. Finally, the performance of DBSA algorithm was tested on a large number of benchmark TSP instances. Experimental results show that DBSA algorithm is better or competitively outperforms many state-of-the-art metaheuristic algorithms.

Funder

Natural Science Foundation of Fujian Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3