Numerical Simulations of Airborne Glaciogenic Cloud Seeding Using the WRF Model with the Modified Morrison Scheme over the Pyeongchang Region in the Winter of 2016

Author:

Chae Sanghee1ORCID,Chang Ki-Ho1ORCID,Seo Seongkyu1ORCID,Jeong Jin-Yim1ORCID,Kim Baek-Jo1,Kim Chang Ki2,Yum Seong Soo3,Kim Jinwon4

Affiliation:

1. Applied Meteorology Research Division, National Institute of Meteorological Sciences, Jeju 63568, Republic of Korea

2. New and Renewable Energy Resource Center, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea

3. Department of Atmospheric Sciences, Yonsei University, Seoul 03722, Republic of Korea

4. Climate Research Division, National Institute of Meteorological Sciences, Jeju 63568, Republic of Korea

Abstract

A model was developed for simulating the effects of airborne silver iodide (AgI) glaciogenic cloud seeding using the weather research and forecasting (WRF) model with a modified Morrison cloud microphysics scheme. This model was used to hindcast the weather conditions and effects of seeding for three airborne seeding experiments conducted in 2016. The spatial patterns of the simulated precipitation and liquid water path (LWP) qualitatively agreed with the observations. Considering the observed wind fields during the seeding, the simulated spatiotemporal distributions of the seeding materials, AgI, and snowfall enhancements were found to be reasonable. In the enhanced snowfall cases, the process by which cloud water and vapor were converted into ice particles after seeding was also reasonable. It was also noted that the AgI residence time (>1 hr) above the optimum AgI concentration (105 m−3) and high LWP (>100 g m−2) were important factors for snowfall enhancements. In the first experiment, timing of the simulated snowfall enhancement agreed with the observations, which supports the notion that the seeding of AgI resulted in enhanced snowfall in the experiment. The model developed in this study will be useful for verifying the effects of cloud seeding on precipitation.

Funder

National Institute of Meteorological Sciences

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3