Curcumin Enhanced Ionizing Radiation-Induced Immunogenic Cell Death in Glioma Cells through Endoplasmic Reticulum Stress Signaling Pathways

Author:

Xiu Zenghe1,Sun Ting2ORCID,Yang Ying1,He Yuping1,Yang Shuangyu1,Xue Xuefei1,Yang Wei1ORCID

Affiliation:

1. State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China

2. Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China

Abstract

Objective. Local radiotherapy may cause distant tumor regression via inducing immunogenic cell death (ICD). Here, we investigated the effect of curcumin on ionizing radiation-induced immunogenic cell death in normoxic or hypoxic glioma cells and its mechanism in vitro and vivo. Methods. Hypoxic or normoxic glioma cell apoptosis and the cell surface exposure of calreticulin (CRT) were detected by flow cytometry. Extracellular ATP and HSP70 were measured by chemiluminescence assay and ELISA, respectively. Endoplasmic reticulum (ER) stress protein levels were detected by western blot. Moreover, the induction of bona fide ICD was detected by vaccination assays in mice bearing glioma model. Spleen lymphocytes and tumor-infiltrating lymphocyte subsets were analyzed by flow cytometry and immunohistochemistry. Results. Curcumin incubation before X-ray irradiation significantly increased radiation-induced apoptosis rate in normoxic or hypoxic glioma cells. Curcumin enhanced radiation-induced CRT exposure, release of HSP70 and ATP, and ER stress signaling activity. After treatment with ER stress pathway inhibitors, cell apoptosis and CRT exposure induced by the combination treatment of curcumin and X-ray were reduced. In vaccination experiments, glioma cells irradiated by X-ray produced a strong immunogenic response rejecting tumor formation in 70% mice. In comparison, cells treated by curcumin and X-ray produced a stronger immune response rejecting tumor formation in 90% mice. The combination treatment increased the percentage of tumor-infiltrating CD4+, CD8+ T lymphocytes, and CD11c+ dendritic cells compared to X-ray irradiation alone. Conclusion. Ionizing radiation-induced normoxic or hypoxic glioma immunogenic cell death could be further enhanced by curcumin through activating the ER stress PERK-eIF2α and IRE1α-XBP1 signaling pathways.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3