Affiliation:
1. State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
2. Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
3. Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
Abstract
Researches have demonstrated that trans-fatty acids are related to the progression of atherosclerosis, but the underlying mechanism is not clear till now. In the presented study, two-dimensional electrophoresis based proteomics was used to discover the role of elaidic acid in atherosclerosis. In human umbilical vein endothelial cells (HUVEC), twenty-two and twenty-three differentially expressed proteins were identified in low (50 μmol/L) and high (400 μmol/L) concentration elaidic acid simulated groups, respectively, comparing with the control group. The expressions of some selected proteins (PSME3, XRCC5, GSTP1, and GSTO1) were validated by qRT-PCR analysis. Western blotting analysis further confirmed that elaidic acid downregulated the expression of PSME3 and XRCC5. Moreover, P53, the downstream protein of PSME3, was further investigated. Results demonstrated that a variety of proteins, many of which were related to oxidative stress, apoptosis, and DNA damage, were involved in the elaidic acid induced atherosclerosis. Furthermore, P53 was demonstrated to regulate the atherosclerosis through cell cycle arrest and apoptosis pathway.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献