Revealing the Impact of High Current Overcharge/Overdischarge on the Thermal Safety of Degraded Li-Ion Batteries

Author:

Qian Liqin12,Yi Yahui2,Zhang Wenjing2,Fu Chenlong2,Xia Chengyu2,Ma Tiancai1ORCID

Affiliation:

1. Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China

2. Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University (Ministry of Education & Hubei Province), Wuhan, Hubei 430100, China

Abstract

To analyze the impact of two commonly neglected electrical abuse operations (overcharge and overdischarge) on battery degradation and safety, this study thoroughly investigates the high current overcharge/overdischarge effect and degradation on 18650-type Li-ion batteries (LIBs) thermal safety. Based on the temperature-voltage behavior and induced thermal runaway (TR) mechanisms, the overcharge and overdischarge-triggered TR processes are divided into four and three stages. Furthermore, the degradation effect is analyzed by analyzing the incremental capacity-differential voltage curves. During the high current cycling process, lithium inventory decreases significantly. Besides, the active material decreases when the battery degrades to a certain level. Lithium plating is the primary reason for lithium inventory loss; the plated lithium grows with the increment of degraded/overcharged level. Besides, the dissolution and deposition affect the internal short circuit degree, which can be observed from the electrode potential and cell voltage value. Moreover, battery cells undergo different degradation degrees, and different current rates of charging/discharging exhibit similar temperature-rising trends during the adiabatic TR tests. However, with the degradation degree increase, battery capacity fades, TR becomes easier to be triggered by the high current rate, and TR reactions are severe. This study guides early quantitative detection, safer battery cell design, and enhanced thermal safety management.

Funder

Yangtze University

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3