ML-DSTnet: A Novel Hybrid Model for Breast Cancer Diagnosis Improvement Based on Image Processing Using Machine Learning and Dempster–Shafer Theory

Author:

Eftekharian Mohsen1,Nodehi Ali1ORCID,Enayatifar Rasul2

Affiliation:

1. Department of Computer Engineering, Gorgan Branch, Islamic Azad University, Gorgan, Iran

2. Department of Computer Engineering, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran

Abstract

Medical intelligence detection systems have changed with the help of artificial intelligence and have also faced challenges. Breast cancer diagnosis and classification are part of this medical intelligence system. Early detection can lead to an increase in treatment options. On the other hand, uncertainty is a case that has always been with the decision-maker. The system’s parameters cannot be accurately estimated, and the wrong decision is made. To solve this problem, we have proposed a method in this article that reduces the ignorance of the problem with the help of Dempster–Shafer theory so that we can make a better decision. This research on the MIAS dataset, based on image processing machine learning and Dempster–Shafer mathematical theory, tries to improve the diagnosis and classification of benign, malignant masses. We first determine the results of the diagnosis of mass type with MLP by using the texture feature and CNN. We combine the results of the two classifications with Dempster–Shafer theory and improve its accuracy. The obtained results show that the proposed approach has better performance than others based on evaluation criteria such as accuracy of 99.10%, sensitivity of 98.4%, and specificity of 100%.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3