Eliminating Boundary Layer Separation on a Cylinder with Nonuniform Suction

Author:

Ramsay James1ORCID,Sellier Mathieu1,Ho Wei Hua23

Affiliation:

1. Department of Mechanical Engineering, University of Canterbury, Ilam, Christchurch, 8041, New Zealand

2. Department of Mechanical and Industrial Engineering, School of Engineering, University of South Africa, South Africa

3. School of Mechanical, Industrial and Aeronautical Engineering, University of Witwatersrand, Johannesburg, South Africa

Abstract

Boundary layer separation negatively influences the performance of aerospace vehicles, for example, by triggering static stall or reducing combustion engine efficiency. Developing effective flow control to delay or eliminate separation is therefore of real use to the field. In this paper, numerical studies were carried out to optimise distributed suction profiles for preventing boundary layer separation on a circular cylinder in the fully laminar regime (Re<188), with the least control effort. Relationships were found between the Reynolds number, the separation angle of the uncontrolled case, and the uniform suction needed to eliminate separation. It was found that for Re>20, the uniform suction required to eliminate separation followed a quadratic profile, as a function of Re. Maximum uniform suction effort was needed at Re=20, requiring a suction coefficient of CQ=49.14 (as a percentage of the free-stream velocity) to eliminate separation. To resolve the best nonuniform suction profile at Re=180, a variety of optimisation studies were performed using the coordinate search method. It was determined that the use of six control segments on each half of the cylinder provided the best control and efficient convergence to the optimal solution. 6-segment nonuniform suction eliminated separation at Re=180 with net suction effort of CQ=13.26 compared to CQ=31.25 for the uniform case. These optimal suction profiles were compared using time-dependent simulations to confirm that both methods eliminate separation when introduced to an already unsteady case. Nonuniform suction eliminated separation faster, though uniform suction was more stable.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3