Evaluation of the Modal Coupling Effect in Midstory Isolation Systems Based on Random Vibration Analysis

Author:

Song Xiao1ORCID,Xue Songtao23

Affiliation:

1. College of Civil Engineering and Architecture, Henan University, Kaifeng, China

2. Department of Architecture, Tohoku Institute of Technology, Sendai, Japan

3. Department of Disaster Mitigation for Structures, Tongji University, Shanghai, China

Abstract

At present, the midstory isolation (MSI) technology has great potential for application in historical buildings’ retrofitting and multifunction buildings. The coupling effect due to the variability of the location of the isolation layer may amplify the structural seismic response and is required for in-depth analysis. This paper aims to evaluate the magnitude of the coupling effect and delimitate the region of the coupling effect to be considered. Based on the complex mode superposition method, the explicit formulas for calculating the random response of the simplified model are deduced. The root-mean-square (RMS) ratio of the shear force coefficient of the upper isolation system is adopted as the performance indicator to evaluate the coupling amplification effect of the MSI system. Parameter analysis indicates that the coupling region is closely related to the mass ratio and frequency ratio of the upper and lower structures to the isolation layer. In general, the region of the coupling effect to be considered can be divided into two parts according to parameters of frequency ratios, depending on the thresholds of the performance indicator. As the mass ratio of the upper isolation system to the entire system increases, one of the coupling regions shrinks and eventually disappears, indicating that the coupling amplification effect in this region can be neglected under certain conditions. Finally, the time-domain analysis of three representative numerical cases of MSI buildings was performed to verify the reliability of the results obtained from the frequency-domain analysis. The research results can provide technical guidance for the preliminary design of the MSI buildings.

Funder

Japan Society for the Promotion of Science

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3