Experimental Analysis of Spiral Finishing Process on EDM Drilled Hole in Titanium

Author:

Hossain Md Farid1,Bhowmik Abhijit12ORCID,Alam Samim3,Gajghate Sameer Sheshrao4ORCID,Kibria Golam3,Prakash Chander5,Majumder Himadri4ORCID

Affiliation:

1. Department of Mechanical Engineering, Dream Institute of Technology, Kolkata 700104, India

2. Chitkara Centre for Research and Development, Chitkara University, Chandigarh, Himachal Pradesh 174103, India

3. Department of Mechanical Engineering, Aliah University, Newtown Campus, Kolkata 700156, India

4. Department of Mechanical Engineering, G H Raisoni College of Engineering and Management, Pune 412207, India

5. Centre of Research Impact and Outreach, Chitkara University, Rajpura 140417, Punjab, India

Abstract

It is quite evident that some of the experimental research works have been carried out by researchers in the area of spiral polishing using abrasive for surface finishing improvement but most of the experiment has been employed on Steel or Alloy Steel as a material. Very few number of research works have been performed by researchers across the globe on the Spiral Polishing Method of Titanium holes made by Electrical Discharge Machining (EDM). Therefore, experimental investigations were carried out in the area of Spiral Polishing and Finishing of EDM-drilled holes of various materials to meet the desired goal of demands on the surface quality. This experimentation aims to develop a novel method with spiral polishing using abrasive flow finishing. To explore the search investigation and find out the better surface finishing for through holes made on EDM, the process parameters have been designed using the Taguchi L16 orthogonal array with input parameters such as Current (I), Pulse on time (Ton), and Pulse off time (Toff). The addition of Boron Carbide Powder with Handwash, Glycerine, Shampoo, and Liquid Soap is used to decrease the Surface Roughness (Ra) with a ratio of 5 : 1. The Taguchi technique is used to assess the P/M process parameter setting for a given signal to noise (S/N) ratio.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3