Experimental and Numerical Evaluation of Shear Strength of Directly and Indirectly Loaded Flanged Recycled Self-Compacted Reinforced Concrete Deep Beams

Author:

Hussein Amer Alhussein Thamer1ORCID,Abdul Samad Khudhair Jamal1

Affiliation:

1. Department of Civil Engineering, College of Engineering, University of Basrah, Basrah 61004, Iraq

Abstract

Experimental and numerical investigations of the behavior of directly and indirectly loaded flanged reinforced concrete (RC) deep beams cast with self-compacted concrete (SCC) containing recycled concrete as coarse aggregate (RCA) were conducted in this research. Seventeen RC deep flanged beams were designed to fail in shear. These beams were divided into three groups: twelve indirectly loaded beams without shear reinforcement; three directly loaded beams without stirrups; and two indirectly loaded beams with vertical stirrups. These beams were also classified according to the RCA ratio and shear span-to-effective depth (a/d) ratio, which will be detailed later. The RCA ranged from 0% to 75%, while the a/d ratio was taken as 1.0, 1.35, and 1.7. Experimental results show that the use of RCA reduces the cracking and ultimate capacities, and this finding complies with the conclusions of several research studies in the literature as will be detailed later. It was observed that beams with higher RCA exhibited higher deflection, strain, and crack width. Furthermore, by increasing the a/d ratio, the ultimate load was decreased due to the lower contribution of arch action shear transfer in the beam. A web reinforcement spaced at 100 mm and 50 mm increases the ultimate load by 35% and 48%, respectively. Strut and tie model (STM) presented by the American Concrete Institute (ACI) 318-14 and the American Association of State Highway and Transportation Officials (AASHTO LRFD 2012) was used to predict the ultimate shear capacity of the beams. STM predicted lower beam capacity than the experimental result. The ultimate strength calculated using ACI318-14 and AASHTO LRFD 2012 was on average 38% and 52% lower than the experimental data, respectively, which reflects the conservative nature of this approach. Finally, 3D finite element models were created to investigate the responses of the beams. The FE results showed very good agreement with the experimental data, where FE-predicted shear capacities were on average 9% higher than the experimental results.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3