New Leakage Model for Naturally Fractured Formations Considering the Effects of Dual-System Hydro-Mechanical Coupling

Author:

Peng Hao1ORCID,Li Qian1ORCID,Gao JiaJia1,Yin Hu1,Wang Jun2

Affiliation:

1. Petroleum Engineering School, Southwest Petroleum University, Chengdu, Sichuan 610500, China

2. Chuanqing Drilling Company Limited Chuanxi Drilling Company, Chengdu, Sichuan 610000, China

Abstract

Within the existing leakage model accounting for drilling mud loss in naturally-fractured formations, the leak-off velocity is assigned to a fixed value or described by the Cater model, which does not consider the influence of dual-system hydromechanical coupling effects between fracture-wall and fracture-inner systems. The dual-system between the formation and fracture is controlled by the flowing net pressure inside the fracture, which determines the dynamic width of the natural fracture and leak-off velocity. In this study, first, the leak-off velocity under the hydromechanical coupling of the fracture-wall system was obtained based on the coupled governing equations of the solid and liquid phases of the natural fracture-wall, as well as Darcy’s law. Second, the leakage-front invasion velocity, leakage rate, and leakage volume under the hydromechanical coupling of the fracture-inner system were clarified according to the geometric governing of the natural fracture morphology. Finally, the dual-system coupling leakage model was developed considering the continuous equation, while the numerical solution was obtained through a time-step deduction. Results show that at a given time, a greater formation permeability leads to a greater leakage rate and volume, with a smaller leakage front distance. The leakage rate increases with an increase in formation permeability, well bottom differential pressure, and initial width of the natural fracture, while it decreases with an increase in the fracture normal stiffness, yield stress, and plastic viscosity. The new leakage model and numerical method concerning time-step deduction are assessed by solving the issues of fully coupled fracture-wall and fracture-inner systems considering drilling fluid leak-off. The new model may be utilized to simulate various problems related to the invasion of drilling fluids into the fractures, including predicting the dynamic width of natural fracture and borehole ballooning/breathing phenomena.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference26 articles.

1. Lost circulation can be managed better than ever: drilling and completion;C. Ivan;World Oil,2003

2. Fracture closure stress (FCS) and lost returns practices;F. E. Dupriest

3. Advances in Characterizing Natural-Fracture Permeability From Mud-Log Data

4. Characterization of flow within natural fractures: numerical simulations and field applications;F. Bertuzzi

5. Use of mud microloss analysis while drilling to improve the formation evaluation in fractured reservoir;G. Beda

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3