Affiliation:
1. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
2. Nanjing Customs, Nanjing, China
Abstract
The traveling salesman problem (TSP) is a typical combinatorial optimization problem, which is often applied to sensor placement, path planning, etc. In this paper, an improved ACO algorithm based on an adaptive heuristic factor (AHACO) is proposed to deal with the TSP. In the AHACO, three main improvements are proposed to improve the performance of the algorithm. First, the k-means algorithm is introduced to classify cities. The AHACO provides different movement strategies for different city classes, which improves the diversity of the population and improves the search ability of the algorithm. A modified 2-opt local optimizer is proposed to further tune the solution. Finally, a mechanism to jump out of the local optimum is introduced to avoid the stagnation of the algorithm. The proposed algorithm is tested in numerical experiments using 39 TSP instances, and results shows that the solution quality of the AHACO is 83.33% higher than that of the comparison algorithms on average. For large-scale TSP instances, the algorithm is also far better than the comparison algorithms.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献