Symmetric Quantile Quantizer Parameterization for the Laplacian Source: Qualification for Contemporary Quantization Solutions

Author:

Perić Zoran1ORCID,Nikolić Jelena1ORCID,Aleksić Danijela2ORCID,Perić Anastasija1ORCID

Affiliation:

1. Faculty of Electronic Engineering, University of Niš, Niš 18000, Serbia

2. Department of Mobile Network Niš, Telekom Srbija, Voždova 11, Niš, Serbia

Abstract

In this paper, we consider the opportunities and constraints, which rest on quantization as a guiding principle for data representation and compression. In particular, we propose a novel model of Symmetric Quantile Quantizer (SQQ) and we describe in detail its parameterization. We suggest a simple method for offline precalculation of its parameters and we examine the inevitable loss of information introduced by SQQ, as an important part of bit optimization task at the traditional network level, which can be globally mapped out in many contemporary solutions. Our anticipation is that such precalculated values can be leveraged in deterministic quantization process. We highlight that this notice heavily relies on the fact that the values of interest are distributed according to the Laplacian distribution, which we consider in the paper. The basic difference of our SQQ and the previously established asymptotically optimal quantizer model, that is, Scalar Companding Quantizer (SCQ), is reflected in the fact that, in SCQ model, both decision thresholds and representation levels are determined in accordance with the specified compressor function, whereas in our SQQ model, a precedence of SCQ model for the straightforward decision thresholds calculation is used, while the representation levels are optimally determined for the specified decision thresholds and assumed Laplacian distribution. As a result, our SQQ outperforms SCQ in terms of signal-to-quantization noise ratio (SQNR). As stated in this paper, there are numerous indications to make us believe that appropriate quantizer parameterization will move us closer to an optimization in the amount of the transferred data in bits, which is strongly dependent on the amount of SQNR.

Funder

Science Fund of the Republic of Serbia

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference34 articles.

1. Improving Predictions Using Linear Combination Of Multiple Extreme Learning Machines

2. A Novel Performance Prediction Model for the Machining Process Based on the Interval Type-2 Fuzzy Neural Network

3. An Improved Speech Segmentation and Clustering Algorithm Based on SOM and K-Means

4. Dropout: a simple way to prevent neural networks from overfitting;N. Strivastava;Journal of Machine Learning Research,2014

5. A survey on methods and theories of quantized neural networks;Y. Guo,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3