Multiple-Symbol Detection Scheme for IEEE 802.15.4c MPSK Receivers over Slow Rayleigh Fading Channels

Author:

Zhang Gaoyuan123ORCID,Li Haiqiong1ORCID,Han Congzheng2ORCID,Shi Congyu1ORCID,Wen Hong3,Wang Dan1

Affiliation:

1. School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China

2. Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

3. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

Although the full multiple-symbol detection (MSD) for IEEE 802.15.4c multiple phase shift keying (MPSK) receivers gives much better performance than the symbol-by-symbol detection (SBSD), its implementation complexity is extremely heavy. We propose a simple MSD scheme based on two implementation-friendly but powerful strategies. First, we find the best and second-best decisions in each symbol position with the standard SBSD procedure, and the global best decision is frozen. Second, for the remaining symbol positions, only the best and second-best symbol decisions, not all the candidates, are jointly searched by the standard MSD procedure. The simulation results indicate that the packet error rate (PER) performance of the simplified MSD scheme is almost the same as that of the full scheme. In particular, at PER of 1 × 10 3 , no more than 0.2 dB performance gap is observed if we just increase the observation window length N to 2. However, the number of decision metrics needed to be calculated is reduced from 256 to 2. Thus, much balance gain between implementation complexity and detection performance is achieved.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3