Image Recognition Technology in Texture Identification of Marine Sediment Sonar Image

Author:

Sun Chao12,Wang Li1ORCID,Wang Nan2,Jin Shaohua2

Affiliation:

1. Liaoning Normal University, Dalian, Liaoning, China

2. PLA Dalian Naval Academy, Dalian, Liaoning, China

Abstract

Through the recognition of ocean sediment sonar images, the texture in the image can be classified, which provides an important basis for the classification of ocean sediment. Aiming at the problems of low efficiency, waste of human resources, and low accuracy in the traditional manual side-scan sonar image discrimination, this paper studies the application of image recognition technology in sonar image substrate texture discrimination, which is popular in many fields. At the same time, considering the scale complexity, diversity, multisources, and small sample characteristics of the marine sediment sonar image texture, the transfer learning is introduced into the image recognition, and the K-means clustering algorithm is used to reset the prior frame parameters to improve the speed and accuracy of image recognition. Through the experimental comparison between the original model and the new model based on transfer learning, the AP (average precision) value of the yolov3 model based on transfer learning can reach 84.39%, which is 0.97% higher than that of the original model, with considerable accuracy and room for improvement; it takes less than 0.2 seconds. This shows the applicability and development of image recognition technology in texture discrimination of bottom sonar images.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference29 articles.

1. Reconstruction of the south China sea coral reef shipwreck and surrounding topography based on side scan sonar images;X. Liu;Tropical Geography V,2020

2. Automatic Seagrass Disturbance Pattern Identification on Sonar Images

3. Dynamic model simulation of long-term evolution of seabed terrain of dumping area based on seabed side-scan sonar detection technology;W. Zeng;Journal of Coastal Research,2018

4. Recent advances in convolutional neural networks;J. Gu;Pattern Recognition,2015

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3