Aerodynamic Fields inside S-Shaped Baffled-Channel Air-Heat Exchangers

Author:

Menni Younes1ORCID,Lorenzini Giulio2,Kumar Ravinder3ORCID,Mosavati Babak4,Nekoonam Saeed5ORCID

Affiliation:

1. Unit of Research on Materials and Renewable Energies, Department of Physics, Faculty of Sciences, Abou Bekr Belkaid University, Tlemcen, Algeria

2. Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A, Parma 43124, Italy

3. School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, Punjab, India

4. Department of Mechanical and Ocean Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA

5. Department of Renewable Energies and Environment, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran

Abstract

A numerical study of an especial heat exchanger (HE) equipped with complicated geometry baffles was performed in this research study. This shell-and-tube HE could be applied in various engineering applications like solar collectors. It can be acknowledged that generating longitudinal vortices in the flow results in enhancing the turbulent convective heat transfer. In order to generate these vortices, S-shaped baffles can be applied. It should be noted that computational analysis of shell-and-tube HEs is considered a challenging task due to these vortices. So, in this study, a commercial CFD software has been used for solving the problem and important equation and numerical approach used in the simulation have been explained. The aerodynamic aspect with respect to stream function, mean, axial, and transverse velocities, dynamic pressure, turbulent dissipation rate, turbulence kinetic energy, turbulent viscosity, and turbulence intensity fields was included in this research. This study reports many physical phenomena, such as the turbulence, instability, flow separation, and the appearance of reverse secondary currents. The average speed changed in different areas, where it is low next to the baffles. Velocity amounts are paramount around the upper channel’s wall, starting from the upper left side of the last baffle to the exit. This increase in velocity can be justified by a reduction in flow area and pressure augmentation.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3