Hybrid Convolutional Neural Network for Localization of Epileptic Focus Based on iEEG

Author:

Sui Linfeng12ORCID,Zhao Xuyang23,Zhao Qibin2,Tanaka Toshihisa23,Cao Jianting12ORCID

Affiliation:

1. Graduate School of Engineering, Saitama Institute of Technology, 369-0293, Japan

2. RIKEN Center for Advanced Intelligence Project (AIP), 103-0027, Japan

3. Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, 184-8588, Japan

Abstract

Epileptic focus localization by analysing intracranial electroencephalogram (iEEG) plays a critical role in successful surgical therapy of resection of the epileptogenic lesion. However, manual analysis and classification of the iEEG signal by clinicians are arduous and time-consuming and excessively depend on the experience. Due to individual differences of patients, the iEEG signal from different patients usually shows very diverse features even if the features belong to the same class. Accordingly, automatic detection of epileptic focus is required to improve the accuracy and to shorten the time for treatment. In this paper, we propose a novel feature fusion-based iEEG classification method, a deep learning model termed Time-Frequency Hybrid Network (TF-HybridNet), in which short-time Fourier transform (STFT) and 1d convolution layers are performed on the input iEEG in parallel to extract features of the time-frequency domain and feature maps. And then, the time-frequency features and feature maps are fused and fed to a 2d convolutional neural network (CNN). We used the Bern-Barcelona iEEG dataset for evaluating the performance of TF-HybridNet, and the experimental results show that our approach is able to differentiate the focal from nonfocal iEEG signal with an average classification accuracy of 94.3% and demonstrates an improved accuracy rate compared to the model using only STFT or one-dimensional convolutional layers as feature extraction.

Funder

JST CREST

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3