Effect of Stem Cell-Derived Extracellular Vesicles on Damaged Human Corneal Endothelial Cells

Author:

Nuzzi Raffaele1ORCID,Buono Lola2ORCID,Scalabrin Simona1ORCID,De Iuliis Marco1ORCID,Bussolati Benedetta2ORCID

Affiliation:

1. Eye Clinic, Department of Surgical Sciences, University of Turin, AOU Città della Salute e della Scienza, Turin, Italy

2. Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy

Abstract

Purpose. Human corneal endothelial cells (HCECs) are essential to visual function; however, since they have limited proliferative capacity in vivo, they are prone to corneal endothelial dysfunction. At present, the only treatment is a corneal transplantation from donor cadavers. Also, due to a global shortage of donor corneas, it is important to find alternative strategies. Recent studies highlight that stem cell–derived extracellular vesicles (EVs) play a relevant role in stem cell-induced regeneration by reprogramming injured cells and inducing proregenerative pathways. The aim of this work is to evaluate whether EVs derived from mesenchymal stem cells (MSC-EVs) are able to promote regeneration of damaged HCECs. Methods. We isolated HCECs from discarded corneas in patients undergoing corneal transplantation or enucleation ( N = 23 patients). Bone marrow mesenchymal stem cells (MSCs) were obtained from Lonza, cultured, and characterized. MSC-EVs were obtained from supernatants of MSCs. In order to establish a valid in vitro damage model to test the regenerative potential of EVs on HCECs, we evaluated the proliferation rate and the apoptosis after exposing the cells to serum-deprived medium at different concentrations for 24 hours. We then evaluated the HCEC migration through a wound healing assay. Results. In the selected serum deprivation damage conditions, the treatment with different doses of MSC-EVs resulted in a significantly higher proliferation rate of HCECs at all the tested concentrations of EVs ( 5 20 × 10 3 MSC-EV/cell). MSC-EVs/cell induced a significant decrease in number of total apoptotic cells after 24 hours of serum deprivation. Finally, the wound healing assay showed a significantly faster repair of the wound after HCEC treatment with MSC-EVs. Conclusions. Results highlight the already well-known proregenerative potential of MSC-EVs in a totally new biological model, the endothelium of the cornea. MSC-EVs, indeed, induced proliferation and survival of HCECs, promoting the migration of HCECs in vitro.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Reference96 articles.

1. Anatomy and physiology of the cornea

2. Biology of the corneal endothelium in health and disease

3. The developing corneal endothelium: Correlation of morphology, hydration and Na/K ATPase pump site density

4. The cornea and sclera;D. M. Maurice,1984

5. Cell cycle kinetics in corneal endothelium from old and young donors;T. Senoo;Investigative Ophthalmology & Visual Science,2000

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3