A Simulation Study on the Spatial-Temporal Characteristics of Pore Water Pressure and Roof Water Inrush in an Aquiclude

Author:

Yang Tao12,Li Ji12ORCID,Wan Longwen3,Wang Sheng3

Affiliation:

1. Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China

2. Key Laboratory of Western Mine Exploitation and Hazard Prevention with Ministry of Education, Xi’an University of Science and Technology, Xi’an 710054, China

3. Longmenxia South Coal Mine of Sichuan Huayingshan Coal Industry Co., Ltd., Guang’an 638020, China

Abstract

As the working face advances, the overlying aquiclude is subjected to periodic dynamic loads, causing pore water pressure distortion, which provides important forewarning for a water inrush disaster in shallow coal seams. In order to analyze the pore water pressure in an aquiclude and determine the spatial-temporal characteristics of the water inrush, the aquiclude is simplified into a saturated, porous, liquid-solid medium and a viscoelastic dynamic model is created to obtain the analytical solution of the pressure distribution. FLAC3D is used to develop a fluid-solid coupling model and to analyze the characteristics of the pressure change and overburden under different mining intensities. This study on pore water pressure in an aquiclude and the determination of the spatial-temporal characteristics of the water inrush provides a foundation for developing early-warning systems for roof water inrush.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference32 articles.

1. Geological disasters and control technology in high intensity mining area of western China;F. Limin;Journal of China Coal Society,2017

2. On sustainable coal mining in China;M. Qian;Journal of China Coal Society,2010

3. Study on water-inrush mechanism and prevention during coal mining under unconsolidated confined aquifer;X. Jia;Journal of Mining and Safety Engineering,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3