Iris Recognition Development Techniques: A Comprehensive Review

Author:

Malgheet Jasem Rahman1ORCID,Manshor Noridayu Bt1ORCID,Affendey Lilly Suriani1ORCID

Affiliation:

1. Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia

Abstract

Recently, iris recognition techniques have achieved great performance in identification. Among authentication techniques, iris recognition systems have received attention very much due to their rich iris texture which gives robust standards for identifying individuals. Notwithstanding this, there are several challenges in unrestricted recognition environments. In this article, the researchers present the techniques used in different phases of the recognition system of the iris image. The researchers also reviewed the methods associated with each phase. The recognition system is divided into seven phases, namely, the acquisition phase in which the iris images are acquired, the preprocessing phase in which the quality of the iris image is improved, the segmentation phase in which the iris region is separated from the background of the image, the normalization phase in which the segmented iris region is shaped into a rectangle, the feature extraction phase in which the features of the iris region are extracted, the feature selection phase in which the unique features of the iris are selected using feature selection techniques, and finally the classification phase in which the iris images are classified. This article also explains the two approaches of iris recognition which are the traditional approach and the deep learning approach. In addition, the researchers discuss the advantages and disadvantages of previous techniques as well as the limitations and benefits of both the traditional and deep learning approaches of iris recognition. This study can be considered as an initial step towards a large-scale study about iris recognition.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biometrics;Computer and Information Security Handbook;2025

2. Tailoring emission characteristics of Na+-Sc3+ co-substituted CaMgGe2O6:Cr3+ phosphors for iris acquisition;Journal of Alloys and Compounds;2024-11

3. A sequential combination of convolution neural network and machine learning for finger vein recognition system;Signal, Image and Video Processing;2024-08-14

4. A Novel Hybrid Fusion Combining Palmprint and Palm Vein for Large-Scale Palm-Based Recognition;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2024-07

5. Generate And Evaluate Encryption Keys Obtained From Iris Biometric Data;2024 21st International Multi-Conference on Systems, Signals & Devices (SSD);2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3