Novel Systems and Membrane Technologies for Carbon Capture

Author:

Sanni Eshorame Samuel1ORCID,Sadiku Emmanuel Rotimi2ORCID,Okoro Emeka Emmanuel3ORCID

Affiliation:

1. Department of Chemical Engineering, Covenant University, Ota, Ogun, Nigeria

2. Department of Materials, Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria, South Africa

3. Department of Petroleum Engineering, Covenant University, Ota, Ogun, Nigeria

Abstract

Due to the global menace caused by carbon emissions from environmental, anthropogenic, and industrial processes, it has become expedient to consider the use of systems, with high trapping potentials for these carbon-based compounds. Several prior studies have considered the use of amines, activated carbon, and other solid adsorbents. Advances in carbon capture research have led to the use of ionic liquids, enzyme-based systems, microbial filters, membranes, and metal-organic frameworks in capturing CO2. Therefore, it is common knowledge that some of these systems have their lapses, which then informs the need to prioritize and optimize their synthetic routes for optimum efficiency. Some authors have also argued about the need to consider the use of hybrid systems, which offer several characteristics that in turn give synergistic effects/properties that are better compared to those of the individual components that make up the composites. For instance, some membranes are hydrophobic in nature, which makes them unsuitable for carbon capture operations; hence, it is necessary to consider modifying properties such as thermal stability, chemical stability, permeability, nature of the raw/starting material, thickness, durability, and surface area which can enhance the performance of these systems. In this review, previous and recent advances in carbon capture systems and sequestration technologies are discussed, while some recommendations and future prospects in innovative technologies are also highlighted.

Funder

Covenant University

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3