Multiplex Network Embedding Model with High-Order Node Dependence

Author:

Ning Nianwen1ORCID,Li Qiuyue1,Zhao Kai1,Wu Bin1ORCID

Affiliation:

1. Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Beijing 100876, China

Abstract

Multiplex networks have been widely used in information diffusion, social networks, transport, and biology multiomics. They contain multiple types of relations between nodes, in which each type of the relation is intuitively modeled as one layer. In the real world, the formation of a type of relations may only depend on some attribute elements of nodes. Most existing multiplex network embedding methods only focus on intralayer and interlayer structural information while neglecting this dependence between node attributes and the topology of each layer. Attributes that are irrelevant to the network structure could affect the embedding quality of multiplex networks. To address this problem, we propose a novel multiplex network embedding model with high-order node dependence, called HMNE. HMNE simultaneously considers three properties: (1) intralayer high-order proximity of nodes, (2) interlayer dependence in respect of nodes, and (3) the dependence between node attributes and the topology of each layer. In the intralayer embedding phase, we present a symmetric graph convolution-deconvolution model to embed high-order proximity information as the intralayer embedding of nodes in an unsupervised manner. In the interlayer embedding phase, we estimate the local structural complementarity of nodes as an embedding constraint of interlayer dependence. Through these two phases, we can achieve the disentangled representation of node attributes, which can be treated as fined-grained semantic dependence on the topology of each layer. In the restructure phase of node attributes, we perform a linear fusion of attribute disentangled representations for each node as a reconstruction of original attributes. Extensive experiments have been conducted on six real-world networks. The experimental results demonstrate that the proposed model outperforms the state-of-the-art methods in cross-domain link prediction and shared community detection tasks.

Funder

National Key Research and Development

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph Deep Clustering using Cluster Graph Conventional;2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT);2022-11-20

2. Learning Advisor-Advisee Relationship from Multiplex Network Structure;Knowledge Science, Engineering and Management;2022

3. SAME: Sampling Attack in Multiplex Network Embedding;Advanced Data Mining and Applications;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3