Study of Two Kinds of Quasi AG-Neutrosophic Extended Triplet Loops

Author:

An Xiaogang1ORCID,Chen Mingming12ORCID

Affiliation:

1. School of Arts and Sciences, Shaanxi University of Science & Technology, Xi’an 710021, China

2. Shaanxi Joint Laboratory of Artificial Intelligence, Shaanxi University of Science & Technology, Xi’an 710021, China

Abstract

Abel-Grassmann’s groupoid and neutrosophic extended triplet loop are two important algebraic structures that describe two kinds of generalized symmetries. In this paper, we investigate quasi AG-neutrosophic extended triplet loop, which is a fusion structure of the two kinds of algebraic structures mentioned above. We propose new notions of AG-(l,r)-Loop and AG-(r,l)-Loop, deeply study their basic properties and structural characteristics, and prove strictly the following statements: (1) each strong AG-(l,r)-Loop can be represented as the union of its disjoint sub-AG-groups, (2) the concepts of strong AG-(l,r)-Loop, strong AG-(l,l)-Loop, and AG-(l,lr)-Loop are equivalent, and (3) the concepts of strong AG-(r,l)-Loop and strong AG-(r,r)-Loop are equivalent.

Funder

Education Department of Shaanxi Province

Publisher

Hindawi Limited

Subject

General Mathematics

Reference24 articles.

1. On almost semigroups;M. Kazim;The Aligarh Bulletin of Mathematics,1972

2. On Fuzzy Ordered Abel-Grassmann's Groupoids

3. On fully regular $$\mathcal{AG }$$ -groupoids

4. Left transitive AG-groupoids;M. Rashad;Sindh University Research Journal (Science Series),2014

5. Ideals in Ca-Ag-Groupoids

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3