Genes That Predict Poor Prognosis in Breast Cancer via Bioinformatical Analysis

Author:

Zhou Qian1,Liu Xiaofeng1,Lv Mingming1,Sun Erhu1,Lu Xun2,Lu Cheng1ORCID

Affiliation:

1. Department of Breast, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China

2. School of Public Health, Yale University, New Haven, CT 06520, USA

Abstract

Background. Breast cancer is one of the most commonly diagnosed cancers all over the world, and it is now the leading cause of cancer death among females. The aim of this study was to find DEGs (differentially expressed genes) which can predict poor prognosis in breast cancer and be effective targets for breast cancer patients via bioinformatical analysis. Methods. GSE86374, GSE5364, and GSE70947 were chosen from the GEO database. DEGs between breast cancer tissues and normal breast tissues were picked out by GEO2R and Venn diagram software. Then, DAVID (Database for Annotation, Visualization, and Integrated Discovery) was used to analyze these DEGs in gene ontology (GO) including molecular function (MF), cellular component (CC), and biological process (BP) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway. Next, STRING (Search Tool for the Retrieval of Interacting Genes) was used to investigate potential protein-protein interaction (PPI) relationships among DEGs and these DEGs were analyzed by Molecular Complex Detection (MCODE) in Cytoscape. After that, UALCAN, GEPIA (gene expression profiling interactive analysis), and KM (Kaplan–Meier plotter) were used for the prognostic information and core genes were qualified. Results. There were 96 upregulated genes and 98 downregulated genes in this study. 55 upregulated genes were selected as hub genes in the PPI network. For validation in UALCAN, GEPIA, and KM, 5 core genes (KIF4A, RACGAP1, CKS2, SHCBP1, and HMMR) were found to highly expressed in breast cancer tissues with poor prognosis. They differentially expressed between different subclasses of breast cancer. Conclusion. These five genes (KIF4A, RACGAP1, CKS2, SHCBP1, and HMMR) could be potential targets for therapy in breast cancer and prediction of prognosis on the basis of bioinformatical analysis.

Funder

Maternal and Child Health Research Project of Jiangsu Province

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference25 articles.

1. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;H. Sung;CA: a Cancer Journal for Clinicians,2021

2. The Hallmarks of Cancer

3. Hallmarks of Cancer: The Next Generation

4. RNA in cancer

5. Analysis of Differentially Expressed Genes and Molecular Pathways in Familial Hypercholesterolemia Involved in Atherosclerosis: A Systematic and Bioinformatics Approach

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3