An Infeasible Incremental Bundle Method for Nonsmooth Optimization Problem Based on CVaR Portfolio

Author:

Li Jia-Tong1,Shen Jie2ORCID,Xu Na2

Affiliation:

1. College of Science, Northeast Forestry University, Harbin 150040, China

2. School of Mathematics, Liaoning Normal University, Dalian 116029, China

Abstract

For CVaR (conditional value-at-risk) portfolio nonsmooth optimization problem, we propose an infeasible incremental bundle method on the basis of the improvement function and the main idea of incremental method for solving convex finite min-max problems. The presented algorithm only employs the information of the objective function and one component function of constraint functions to form the approximate model for improvement function. By introducing the aggregate technique, we keep the information of previous iterate points that may be deleted from bundle to overcome the difficulty of numerical computation and storage. Our algorithm does not enforce the feasibility of iterate points and the monotonicity of objective function, and the global convergence of the algorithm is established under mild conditions. Compared with the available results, our method loosens the requirements of computing the whole constraint function, which makes the algorithm easier to implement.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference19 articles.

1. Multi-population parallel co-evolutionary differential evolution for parameter optimization;Y. Song,2020

2. Differential evolution algorithm with wavelet basis function and optimal mutation strategy for complex optimization problem

3. Performance assessment and optimization of a novel geothermal combined cooling and power system integrating an organic flash cycle with an ammonia-water absorption refrigeration cycle;C. Wu;Energy Conversion and Management,2020

4. A proximal bundle method for nonsmooth nonconvex functions with inexact information

5. A proximal bundle method with inexact data for convex nondifferentiable minimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3