Intracavitary Electrocardiogram Guidance Aids Excavation of Rhythm Abnormalities in Patients with Occult Heart Disease

Author:

Wei Yanli1ORCID,Zhu Ying1ORCID,Wen Xin1ORCID,Rui Qing2ORCID,Hu Wei1ORCID

Affiliation:

1. Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 370000, China

2. Department of Critical Care Medicine, The First People’s Hospital of Chang Zhou, Changzhou, Jiangsu 213003, China

Abstract

In this paper, the analysis of intracavitary electrocardiograms is used to guide the mining of abnormal cardiac rhythms in patients with hidden heart disease, and the algorithm is improved to address the data imbalance problem existing in the abnormal electrocardiogram signals, and a weight-based automatic classification algorithm for deep convolutional neural network electrocardiogram signals is proposed. By preprocessing the electrocardiogram data from the MIT-BIH arrhythmia database, the experimental dataset training algorithm model is obtained, and the algorithm model is migrated into the project. In terms of system design and implementation, by comparing the advantages and disadvantages of the electrocardiogram monitoring system platform, the overall design of the system was carried out in terms of functional and performance requirements according to the system realization goal, and a mobile platform system capable of classifying common abnormal electrocardiogram signals was developed. The system is capable of long-term monitoring and can invoke the automatic classification algorithm model of electrocardiogram signals for analysis. In this paper, the functional logic test and performance test were conducted on the main functional modules of the system. The test results show that the system can run stably and monitor electrocardiogram signals for a long time and can correctly call the deep convolutional neural network-based automatic electrocardiogram signal classification algorithm to analyze the electrocardiogram signals and achieve the requirements of displaying the electrocardiogram signal waveform, analyzing the heartbeat type, and calculating the average heart rate, which achieves the goal of real-time continuous monitoring and analysis of the electrocardiogram signals.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3