Vibration Reduction Design and Test of UAV Load Radar

Author:

Fu Jia12,Fan Chaohui123,Yu Changshuai12,Liu Guangming12,Luo Haitao12ORCID

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences (CAS), Shenyang 110016, China

2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

It is challenging to design complex structures and calculate their dimensions only on the basis of theory. This issue was resolved efficiently by the FEM. Using the applicable test, the mechanical properties of the materials used in the damper are estimated, effectively guiding the design of the device and boosting its vibration-reducing performance. A large-load unmanned aerial vehicle (UAV) airborne radar is the subject of this research article. According to particular use case, vibration dampers for the radar-mounting platform are designed using passive vibration isolation technology to reduce aircraft vibration transmission to the radar. A conference paper has already presented prior research on the same topic. Earlier research confirmed the vibration-isolating efficacy of the T-type rubber isolator, which can greatly improve the operational conditions of the airborne radar. In contrast, earlier studies relied more on experimental validation and did not use numerical simulations. This research’s primary objective is the development of a T-type rubber isolator, whose vibration reduction performance is proven using FEM and experiments. Utilizing a suitable simulation analysis method to investigate the vibration reduction of an unmanned aerial vehicle’s (UAV) airborne component is a crucial technical task. By comparing multiple material models, a more precise model for characterizing rubber was developed.

Funder

Jiang Xin-song Innovation Fund

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference36 articles.

1. Current situation and development trend of agricultural UAV;Y. He;Modern Agricultural machinery,2014

2. Current situation and development trend of UAV-based radar;L. Liu;Modern Navigation,2014

3. Future - oriented U. S. unmanned reconnaissance system;M. Du;Modern Weaponry,1998

4. Navigation of small UAVs operating in forests;J. Langelaan

5. Vision based navigation for an unmanned aerial vehicle

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3