Interleukin-10-Modified Adipose-Derived Mesenchymal Stem Cells Prevent Hypertrophic Scar Formation via Regulating the Biological Characteristics of Fibroblasts and Inflammation

Author:

Xie Fang1ORCID,Teng Li1ORCID,Lu Jianjian1ORCID,Xu Jiajie1ORCID,Zhang Chao1ORCID,Yang Liya1ORCID,Ma Xiaoyang1ORCID,Zhao Minghao1ORCID

Affiliation:

1. Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China

Abstract

Hypertrophic scar causes serious functional and cosmetic problem, but no treatment method is known to achieve a satisfactory therapeutic effect. However, mesenchymal stem cells show a possible cure prospect. Here, we investigated the effect of interleukin-10-modified adipose-derived mesenchymal stem cells (IL-10-ADMSC) on the formation of hypertrophic scar. In vitro, IL-10-ADMSC could highly express IL-10 and exhibited stronger inhibition of hypertrophic scar fibroblasts (HSFs) proliferation, migration, and extracellular matrix synthesis (the expression of collagen I, collagen III, FN, and α-SMA protein) than ADMSC. In vivo, we found that IL-10-ADMSC speeded up wound healing time and reduced scar area and scar outstanding height. Same as in vitro, IL-10-ADMSC also exhibited stronger inhibition of extracellular matrix synthesis (the expression of collagen I, collagen III protein) in wound than ADMSC. In addition, we also found that IL-10-ADMSC is also a stronger inhibitory effect on inflammation in wound than ADMSC, and IL-10-ADMSC inhibited TGF-β/Smads and NF-κB pathway. In conclusion, IL-10-ADMSC demonstrated the ability to prevent hypertrophic scar formation. And its possible molecular mechanism might be related to IL-10-ADMSC inhibiting the proliferation and migration of the synthesis of extracellular matrix of HSFs, and IL-10-ADMSC inhibited the inflammation during the wound healing.

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3