Depletion of Fibroblast Growth Factor 12 Restrains the Viability, Stemness, and Motility of Colorectal Cancer

Author:

Gao Xueyuan1,Liao Zuowei1,Su Rukui1,Zheng Dongni1,Huang Guoyuan1,Huang Zhong1,Cheng Xueyuan1ORCID

Affiliation:

1. Department of General Surgery, Beihai People’s Hospital, Beihai, Guangxi 536000, China

Abstract

Background. Colorectal cancer (CRC) is a leading cause of cancer-related death. CRC patients have a poor prognosis due to tumor metastasis and recurrence. Fibroblast growth factor 12 (FGF12), a member of the FGF family, is highly expressed in several cancers. However, little is known about the roles of FGF12 in CRC progression. Methods. The overall survival (OS) of CRC patients was detected via Kaplan–Meier analysis. The FGF12 expression in both CRC tissues and cells was analyzed by qRT-PCR, immunohistochemistry (IHC), and western blotting (WB). LoVo and SW480 cells were transfected with shFGF12 lentivirus to silence FGF12. In vivo and in vitro experiments were performed to explore the FGF12 functions in CRC, including CCK-8, Edu, flow cytometry, Transwell, EMT, cancer stemness, and tumor xenograft experiments. Results. FGF12 was upregulated in both CRC cells and tissues. High expression of FGF12 indicated a shorter OS in CRC patients. FGF12 knockdown inhibited the proliferation, invasion, stemness, and EMT of CRC cells. FGF12 knockdown promoted CRC cell apoptosis in vitro. 740 Y-P (a PI3K/AKT pathway activator) restored the proliferation, stemness, invasion, and EMT in FGF12-deficient cells and reversed LoVo cell apoptosis induced by FGF12 depletion. Depletion of FGF12 inhibited tumor growth, EMT, cancer stemness, and PI3K/AKT pathway in a xenograft mouse model. Conclusions. FGF12 predicts bad clinical outcome and modulates the viability, stemness, and motility of CRC cells. Our study may provide a new insight for the diagnosis and treatment of CRC.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3