Predict the Entrepreneurial Intention of Fresh Graduate Students Based on an Adaptive Support Vector Machine Framework

Author:

Tu Jixia1,Lin Aiju2,Chen Huiling2ORCID,Li Yuping3ORCID,Li Chengye3ORCID

Affiliation:

1. The Communist Youth League, Wenzhou University, Wenzhou, Zhejiang 325035, China

2. College of Mathematics, Physics and Electronic Information, Wenzhou University, Wenzhou, Zhejiang 325035, China

3. Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China

Abstract

Under the background of “innovation and entrepreneurship,” how to scientifically and rationally choose employment or independent entrepreneurship according to their own comprehensive situation is of great significance to the planning and development of their own career and the social adaptation of university personnel training. This study aims to develop an adaptive support vector machine framework, called RF-CSCA-SVM, for predicting college students' entrepreneurial intention in advance; that is, students choose to start a business or find a job after graduation. RF-CSCA-SVM combines random forest (RF), support vector machine (SVM), sine cosine algorithm (SCA), and chaotic local search. In this framework, RF is used to select the most important factors; SVM is employed to establish the relationship model between the factors and the students’ decision to choose to start their own business or look for jobs. SCA is used to tune the optimal parameters for SVM. Additionally, chaotic local search is utilized to enhance the search capability of SCA. A total of 300 students were collected to develop the predictive model. To validate the developed method, other four meta-heuristic based SVM methods were used for comparison in terms of classification accuracy, Matthews Correlation Coefficients (MCC), sensitivity, and specificity. The experimental results demonstrate that the proposed method can be regarded as a promising success with the excellent predictive performance. Promisingly, the established adaptive SVM framework might serve as a new candidate of powerful tools for entrepreneurial intention prediction.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3