Effects of the Rock Bridge Ligament on Fracture and Energy Evolution of Preflawed Granite Exposed to Dynamic Loads

Author:

Sun Kaihua12ORCID,Wu Xiong1,Yi Xuefeng3,Wang Yu3ORCID

Affiliation:

1. School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China

2. CCTEG Ecological Environment Technology Co., Ltd., Beijing 100013, China

3. Beijing Key Laboratory of Urban Underground Space Engineering, Department of Civil Engineering, School of Civil & Resource Engineering, University of Science & Technology Beijing, Beijing 100083, China

Abstract

This paper aims to reveal the mechanical properties, energy evolution characteristics, and dynamic rupture process of preflawed granite under impact loading with different rock bridge angles and strain rates. A series of dynamic impact experiments were conducted along with the separate Hopkinson press bar (SHPB) testing system to analyze and study the overall rock fracture process. Under the impact load, the peak stress of granite increases with the increase of rock bridge angle and strain rate, but the increase gradually decreases. The peak strain also increases gradually with the increase of rock bridge angle, but there is an upper limit value; the total input strain energy increases with the increase of strain rate and rock bridge angle. It is shown that the higher the strain rate, the higher the unit dissipation energy, and the greater the degree of rock fragmentation. For rock under impact loads, the crack first initiates from the wing end of the prefabricated flaw, the preflaw closes gradually, and finally the crack propagates at the locking section leading to the coalescence of rock bridge. With the increase of strain rate, the fragmentation degree of the specimen increases asymptotically, and the average fragmentation size of the specimen decreases with the increase of strain rate. It is suggested that the stability of large rocked slopes is controlled by the locked section, and understanding the fracture evolution of the rock bridge is the key to slope instability prediction.

Funder

China Coal Technology Engineering Group

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3