Brazilin from Caesalpinia sappan L. as a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitor: Pharmacophore-Based Virtual Screening, In Silico Molecular Docking, and In Vitro Studies

Author:

Iqbal Muhammad1,Hasanah Nur12,Arianto Aimee Detria3,Aryati Widya Dwi3,Puteri Meidi Utami45ORCID,Saputri Fadlina Chany45ORCID

Affiliation:

1. Postgraduate Program, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia

2. Pharmacy Department, Widya Dharma Husada School of Health Science, South Tangerang, Banten 15417, Indonesia

3. Laboratory of Biomedical Computation and Drug Design, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia

4. Department of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia

5. National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia

Abstract

Background. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a crucial regulator of low-density lipoprotein cholesterol (LDL-c) levels, as it binds to and degrades the LDL receptor (LDLR) in the lysosome of hepatocytes. Elevated levels of PCSK9 have been linked to an increased LDL-c plasma levels, thereby increasing the risk of cardiovascular disease (CVD), making it an attractive target for therapeutic interventions. As a way to inhibit PCSK9 action, we searched for naturally derived small molecules which can block the binding of PCSK9 to the LDLR. Methods. In this study, we carried out in silico studies which consist of virtual screening using an optimized pharmacophore model and molecular docking studies using Pyrx 0.98. Effects of the candidate compounds were evaluated using in vitro PCSK9-LDLR binding assays kit. Results. Eleven natural compounds that bind to PCSK9 were virtually screened form HerbalDB database, including brazilin. Next, molecular docking studies using Pyrx 0.98 showed that brazilin had the highest binding affinity with PCSK9 at −9.0 (Kcal/mol), which was higher than that of the other ten compounds. Subsequent in vitro PCSK9-LDLR binding assays established that brazilin decreased the binding of PCSK9 to the EGF-A fragment of the LDLR in a dose-dependent manner, with an IC50 value of 2.19 μM. Conclusion. We have identified brazilin, which is derived from the Caesalpinia sappan herb, which can act as a small molecule inhibitor of PCSK9. Our findings suggest that screening for small molecules that can block the interaction between PCSK9 and the LDLR in silico and in vitro may be a promising approach for developing novel lipid-lowering therapy.

Funder

Direktorat Riset and Pengembangan, Universitas Indonesia

Publisher

Hindawi Limited

Subject

Pharmacology (medical),Organic Chemistry,General Pharmacology, Toxicology and Pharmaceutics,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3