High Cycle Fatigue Life Prediction of Single-Crystal Specimen Based on TCD Method and Crystal Plasticity Theory

Author:

Wu Yunwu1,Liu Yixiong12ORCID,Wang Wei1,Li Ying1,Geng Rui1

Affiliation:

1. AECC Shenyang Engine Research Institute, Shenyang 110015, China

2. Northwestern Polytechnical University, Xi’an, 710072, China

Abstract

This paper performs a comprehensive investigation on the high cycle fatigue (HCF) life prediction of turbine blade with film cooling holes. The modified theory of critical distance (MTCD) method is proposed to estimate the fatigue life of the specimen considering the notch sensitivity coefficient and multiaxial stress effect. Then, two types of specimens were designed with regard to the single-hole and multihole conditions. Afterwards, the dangerous path and fatigue life of the two specimens were achieved implementing the MTCD method. Then, the experiments and failure analysis were carried out. The results show that the stress concentration and multiaxial stress resulting from the film cooling holes are the primary reasons that the cracks originated. Meanwhile, the dangerous path of the single-hole specimen is quite different from the multihole specimen due to the interhole interference. Finally, most of the calculated fatigue life is within the twice error band of the tested life.

Funder

AECC Shenyang Engine Research Institute

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3