Garment Waste Recycled Cotton/Polyester Thermal and Acoustic Properties of Air-Laid Nonwovens

Author:

Sakthivel S.1,Melese Bahiru1,Edae Ashenafi1,Abedom Fasika2ORCID,Mekonnen Seblework2,Solomon Eshetu2

Affiliation:

1. Department of Garment Technology, FTVET Institute, Addis Ababa 190310, Ethiopia

2. Department of Textile Technology, Textile, Apparel and Fashion Technology Division, FTVET Institute, Addis Ababa 190310, Ethiopia

Abstract

This research paper reports a study on thermal and sound insulation samples developed from garment waste recycled cotton/polyester fiber (recycled cotton/PET) for construction industry applications. In this research work, the piece of clothing waste recycled cotton and polyester fiber is a potential source of raw material for thermal and sound insulation applications, but its quantities are limited. To overcome the above problems, apparel waste recycled cotton fiber was mixed with recycled/PET fiber in 50/50 proportions in the form of two-layer nonwoven mats with chemical bonding methods. The samples such as cotton (color and white), polyester (color and white), and cotton–polyester blend (color and white) were prepared. All the samples were tested for thermal insulation, acoustic, moisture absorption, and fiber properties as per the ASTM Standard. Also, the behavior of the six recycled cotton/polyester nonwoven samples under high humidity conditions was evaluated. The sound absorption coefficients were measured according to ASTM E 1050 by an impedance tube method; the acoustics absorption coefficients over six frequencies of 125, 250, 500, 1000, 2000, and 4000 Hz were calculated. The result revealed that recycled/PET/cotton garment waste nonwoven mats were absorbing the sound resistance of more than 70% and the recycled nonwoven mats provided the best insulation, acoustic, moisture absorption, and fiber properties. The recycled pieces of clothing waste cotton/polyester nonwoven mats have adequate moisture resistance at high humidity conditions without affecting the insulation and acoustic properties.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3