Malaria Risk Stratification and Modeling the Effect of Rainfall on Malaria Incidence in Eritrea

Author:

Kifle Meron Mehari1ORCID,Teklemariam Tsega Tekeste2,Teweldeberhan Adam Mengesteab2,Tesfamariam Eyasu Habte1ORCID,Andegiorgish Amanuel Kidane1,Azaria Kidane Eyob1

Affiliation:

1. Asmara College of Health Sciences, School of Public Health, Department of Epidemiology and Biostatistics, Asmara, Eritrea

2. Ministry of Health, Asmara, Eritrea

Abstract

Background. Malaria risk stratification is essential to differentiate areas with distinct malaria intensity and seasonality patterns. The development of a simple prediction model to forecast malaria incidence by rainfall offers an opportunity for early detection of malaria epidemics. Objectives. To construct a national malaria stratification map, develop prediction models and forecast monthly malaria incidences based on rainfall data. Methods. Using monthly malaria incidence data from 2012 to 2016, the district level malaria stratification was constructed by nonhierarchical clustering. Cluster validity was examined by the maximum absolute coordinate change and analysis of variance (ANOVA) with a conservative post hoc test (Bonferroni) as the multiple comparison test. Autocorrelation and cross-correlation analyses were performed to detect the autocorrelation of malaria incidence and the lagged effect of rainfall on malaria incidence. The effect of rainfall on malaria incidence was assessed using seasonal autoregressive integrated moving average (SARIMA) models. Ljung–Box statistics for model diagnosis and stationary R-squared and Normalized Bayesian Information Criteria for model fit were used. Model validity was assessed by analyzing the observed and predicted incidences using the spearman correlation coefficient and paired samples t-test. Results. A four cluster map (high risk, moderate risk, low risk, and very low risk) was the most valid stratification system for the reported malaria incidence in Eritrea. Monthly incidences were influenced by incidence rates in the previous months. Monthly incidence of malaria in the constructed clusters was associated with 1, 2, 3, and 4 lagged months of rainfall. The constructed models had acceptable accuracy as 73.1%, 46.3%, 53.4%, and 50.7% of the variance in malaria transmission were explained by rainfall in the high-risk, moderate-risk, low-risk, and very low-risk clusters, respectively. Conclusion. Change in rainfall patterns affect malaria incidence in Eritrea. Using routine malaria case reports and rainfall data, malaria incidences can be forecasted with acceptable accuracy. Further research should consider a village or health facility level modeling of malaria incidence by including other climatic factors like temperature and relative humidity.

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3