SNHG3 Affects Gastric Cancer Development by Regulating SEPT9 Methylation

Author:

Li Wei1,Ma Xudong2,Wang Feng2,Chen Shi2,Guo Qingxiong2,Sun Feng2ORCID,Duan Yongqing2ORCID

Affiliation:

1. Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, China

2. Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China

Abstract

Background. Gastric cancer (GC) is a common malignancy that can be formed by methylation-induced deactivation of tumor silencer genes, which is one of the key mechanisms of tumorigenesis. SEPT9 methylation, a symptomatic marker for tumors, can downregulate gene expression. Long noncoding RNA small nucleolar host gene 3 (lncRNA SNHG3) is a new type of lncRNA related to cancer. Our study investigated the mechanism of SNHG3 regulation of SEPT9 methylation and its effects on the growth, metastasis, and spread of gastric cancer cells. Methods. Quantitative real-time PCR (qRT–PCR) was used to detect SNHG3 and miR-448 in gastric cancer, and a dual-luciferase experiment verified the effects of SNHG3, miR-448, and DNMT1. After abnormally expressing SNHG3, miR-448, and DNMT1 alone or together, methylation-specific PCR was performed to determine the methylation of SEPT9, Western blotting was performed to detect the expression of DNA methyltransferase 1 (DNMT1) and SEPT9, and Transwell, scratch, and CCK-8 assays were performed to reveal the invasion, migration, and cell growth of gastric cancer cells. Results. We found that SNHG3 was upregulated in gastric cancer and that SNHG3 knockdown or miR-448 overexpression inhibited SEP9 methylation and therefore increased its expression, thereby inhibiting the growth, metastasis, and spread of gastric cancer cells. Conclusion. Our study indicates that SNHG3 regulates SEPT9 methylation by targeting miR-448/DNMT1 and subsequently affecting the occurrence and development of gastric cancer.

Funder

Kunming Medical University

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3