Affiliation:
1. Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
2. Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
Abstract
Background. Gastric cancer (GC) is a common malignancy that can be formed by methylation-induced deactivation of tumor silencer genes, which is one of the key mechanisms of tumorigenesis. SEPT9 methylation, a symptomatic marker for tumors, can downregulate gene expression. Long noncoding RNA small nucleolar host gene 3 (lncRNA SNHG3) is a new type of lncRNA related to cancer. Our study investigated the mechanism of SNHG3 regulation of SEPT9 methylation and its effects on the growth, metastasis, and spread of gastric cancer cells. Methods. Quantitative real-time PCR (qRT–PCR) was used to detect SNHG3 and miR-448 in gastric cancer, and a dual-luciferase experiment verified the effects of SNHG3, miR-448, and DNMT1. After abnormally expressing SNHG3, miR-448, and DNMT1 alone or together, methylation-specific PCR was performed to determine the methylation of SEPT9, Western blotting was performed to detect the expression of DNA methyltransferase 1 (DNMT1) and SEPT9, and Transwell, scratch, and CCK-8 assays were performed to reveal the invasion, migration, and cell growth of gastric cancer cells. Results. We found that SNHG3 was upregulated in gastric cancer and that SNHG3 knockdown or miR-448 overexpression inhibited SEP9 methylation and therefore increased its expression, thereby inhibiting the growth, metastasis, and spread of gastric cancer cells. Conclusion. Our study indicates that SNHG3 regulates SEPT9 methylation by targeting miR-448/DNMT1 and subsequently affecting the occurrence and development of gastric cancer.
Funder
Kunming Medical University
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献