Fabrication and Characterization of Alveolus-Like Scaffolds with Control of the Pore Architecture and Gas Permeability

Author:

Lü Lanxin1ORCID,Shen Hongxian1,Kasai Daichi2,Yang Ying23ORCID

Affiliation:

1. Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Laboratory of Emergency Medicine, Xuzhou Medical University, Xuzhou 221002, China

2. School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK

3. School of Life Sciences, Guangzhou University, Guangzhou, China

Abstract

The micrometer scale sac-like alveoli are the most important and essential unit for gas exchange in the lung. Thus, design and fabrication of scaffolds for alveoli regeneration by tissue engineering approach should meet a few topography and functional requests such as large surface area, flexibility, and high gas permeability to their native counterpart. Testing the gas permeability of scaffolds through a fast and simple technique is also highly demanded to assist new scaffold development. This study fabricated alveolus-like scaffolds with regular pore shape, high pore connectivity, and high porosity produced by inverse opal technique alongside randomly distrusted porous scaffolds by salt leaching technique from two different materials (polyurethane and poly(L-lactic acid)). The scaffold surface was modified by immobilization of VEGF. A facile and new technique based on the bubble meter principle enabling to measure the gas permeability of porous scaffolds conveniently has been developed specifically. The cellular response of the scaffolds was assessed by culturing with bone marrow mesenchymal stem cells and coculturing with lung epithelial NL20 and endothelial HUVECs. Our results showed that the newly designed gas permeability device provided rapid, nondestructive, reproducible, and accurate assessment of gas permeability of different scaffolds. The porous polyurethane scaffolds made by inverse opal method had much better gas permeability than other scaffolds used in this study. The cellular work indicated that with VEGF surface modification, polyurethane inverse opal scaffolds induced alveolus-like tissues and have promising application in lung tissue engineering.

Funder

Jiangsu Planned Projects for Postdoctoral Research Funds

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3