Numerical Simulation of Creep Damage and Life Prediction of Superalloy Turbine Blade

Author:

Liu Donghuan1ORCID,Li Haisheng2,Liu Yinghua3

Affiliation:

1. Department of Applied Mechanics, University of Science and Technology Beijing, Beijing 100083, China

2. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China

3. School of Aerospace, Tsinghua University, Beijing 100084, China

Abstract

Creep caused failure is an important failure mode of the turbine blade. A numerical approach of life assessment of the superalloy turbine blade is proposed in the present paper based on the Lemaitre-Chaboche creep damage model. Material damage is introduced into each element based on the ANSYS APDL function, and the creep damage effect is considered through the modification of Young’s modulus. At last, the strength life and stiffness life of the blade can be obtained through the maximum damage and maximum creep strain criterion, respectively. The present method can not only consider the effect of creep damage, but also give the time histories of the element stresses, damage, and creep strain. The above life prediction results based on the proposed method are compared with theθprojection method, and the results suggest that the present life prediction method of turbine blade is feasible and turbine blade’s life in the present study is determined by creep fracture rather than creep deformation.

Funder

National High Technology Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3