Research on Material Selection Method and Brittle Fracture Mechanism of High-Pressure Pipeline

Author:

Li Yulin1ORCID,Li Zhihui12ORCID

Affiliation:

1. School of Mechanical Engineering, Baoji University of Arts and Sciences, Baoji 721016, Shaanxi, China

2. Aeronautical Institute, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China

Abstract

Aiming at the problem of the brittle fracture of pressure pipeline, the elastic constraint structure is described by using members and engineering building structures, and the concept of elastic constraint is proposed. Through the stress field analysis of the pressure pipeline under internal pressure, it is found that the pressure pipeline under internal pressure is an elastic constraint structure. The elastic constraint effect is applied to the pressure pipeline to explore the influence of elastic constraint effect on the brittle fracture of pressure pipeline. The critical wall thickness and limit load of different materials are calculated by the limit bearing formula. Through simulation analysis of materials with different yield ratios and pipelines with different wall thicknesses of the same material (yield ratio is the ratio of yield strength to tensile strength), it was found that pressure pipelines made of the same material have an increased load-bearing capacity as the wall thickness increases, but their own elastic constraint effects are becoming more obvious, and the probability of the brittle fracture of the pipeline is higher. When the wall thickness of pressure pipelines made of materials with different yield ratios is certain, the lower the yield ratio is, the more likely the pipeline is to generate plastic deformation and the larger the deformation capacity is; the higher the yield ratio, the poorer the plastic deformation capacity of the pipeline and the smaller the deformation capacity. Pipelines with large yield ratio are more sensitive to the brittle fracture than those with small yield ratio.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference29 articles.

1. Thermal infrared oil spill monitoring in the “7.16” Dalian Xingang oil pipeline explosion accident;P. Chen;Journal of Environmental Engineering,2013

2. Reflection on major pipeline explosion accidents in history;S. J. Mu;China's Safety Production Science and Technology,2014

3. Pipeline accident investigation report;Canadian Transportation Safety Board,2016

4. Accident analysis report;National Transportation Safety Board,2016

5. Oil and gas pipeline failure control and physical and chemical inspection;H. L. Li

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3