Feed-Forward Deep Neural Network (FFDNN)-Based Deep Features for Static Malware Detection

Author:

Singh Priyanka1,Borgohain Samir Kumar1,Sarkar Achintya Kumar2,Kumar Jayendra3ORCID,Sharma Lakhan Dev3

Affiliation:

1. Department of Computer Science Engineering, National Institute of Technology Silchar, Silchar, Assam 788010, India

2. Department of Electronics and Communication Engineering (ECE Group), Indian Institute of Information Technology Sri City, Sri City, Andhra Pradesh 517646, India

3. School of Electronics Engineering, VIT-AP University, Amaravati, Andhra Pradesh 522 237, India

Abstract

The portable executable header (PEH) information is commonly used as a feature for malware detection systems to train and validate machine learning (ML) or deep learning (DL) classifiers. We propose to extract the deep features from the PEH information through hidden layers of a feed-forward deep neural network (FFDNN). The extraction of deep features of hidden layers represents the dataset with a better generalization for malware detection. While feeding the deep feature of one hidden layer to the succeeding layer, the Gaussian error linear unit (GeLU) activation function is applied. The FFDNN is trained with the GeLU activation function using the deep features of individual layers as well as concatenated deep features of all hidden layers. Similarly, the ML classifiers are also trained and validated in with individual layer deep features and concatenated features. Three highly effective ML classifiers, random forest (RF), support vector machine (SVM), and k-nearest neighbour (k-NN) have been investigated. The performance of the proposed model is demonstrated using a statically significant large dataset. The obtained results are interesting and encouraging in terms of classification accuracy. The classification accuracy reaches 99.15% with the internal discriminative deep feature for the proposed FFDNN-ML classifier with the GeLU activation function.

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

Reference74 articles.

1. COVID ‐19 pandemic cybersecurity issues

2. Signature based malware detection is dead;J. Scott,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3