Affiliation:
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2. School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
Abstract
In this study, nanoscale zero-valent iron (nZVI) was synthesized and used to activate persulfate (PS) for the degradation of norfloxacin (NOR). The nZVI/PS system exhibited a high reactivity towards NOR, and the degradation efficiency of NOR (100 mg/L) reached 93.8% with 0.1 g/L nZVI, 12 mM PS, and an initial pH of 7.0 within 7 min. The NOR degradation followed a pseudo-first-order kinetic model, and the effects of parameters such as nZVI dosage, PS concentration, initial pH, and temperature were investigated systematically. Overloading of nZVI lowered the degradation efficiency owing to the quenching effect of excessive Fe2+. The higher PS concentration and temperature favored the degradation of NOR. The influence of pH was not obvious, and the degradation was effective in a wide pH range. In addition, the radical quenching experiments and electron paramagnetic resonance (EPR) indicated that both sulfate radical (SO4⋅-) and hydroxyl radical (OH⋅) were the dominant radicals in the degradation process, in which the latter played a more important role. Finally, three degradation pathways were proposed based on the result of intermediates identified by liquid chromatography-mass spectrometry. Overall, this study indicated that the nZVI/PS system could provide a promising alternative for NOR wastewater treatment.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献