Estimating Weak Pulse Signal in Chaotic Background with Jordan Neural Network

Author:

Su Liyun1ORCID,Ling Xiu1

Affiliation:

1. School of Science, Chongqing University of Technology, Chongqing 400054, China

Abstract

In target estimating sea clutter or actual mechanical fault diagnosis, useful signal is often submerged in strong chaotic noise, and the targeted signal data are difficult to recover. Traditional schemes, such as Elman neural network (ENN), backpropagation neural network (BPNN), support vector machine (SVM), and multilayer perceptron- (MLP-) based model, are insufficient to extract the weak signal embedded in a chaotic background. To improve the estimating accuracy, a novel estimating method for aiming at extracting problem of weak pulse signal buried in a strong chaotic background is presented. Firstly, the proposed method obtains the vector sequence signal by reconstructing higher-dimensional phase space data matrix according to the Takens theorem. Then, a Jordan neural network- (JNN-) based model is designed, which can minimize the error squared sum by mixing the single-point jump model for targeting signal. Finally, based on short-term predictability of chaotic background, estimation of weak pulse signal from the chaotic background is achieved by a profile least square method for optimizing the proposed model parameters. The data generated by the Lorenz system are used as chaotic background noise for the simulation experiment. The simulation results show that Jordan neural network and profile least square algorithm are effective in estimating weak pulse signal from chaotic background. Compared with the traditional method, (1) the presented method can estimate the weak pulse signal in strong chaotic noise under lower error than ENN-based, BPNN-based, SVM-based, and -ased models and (2) the proposed method can extract the weak pulse signal under a higher output SNR than BPNN-based model.

Funder

Fundamental and Advanced Research Project of CQ CSTC of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3