Private Data Aggregation Based on Fog-Assisted Authentication for Mobile Crowd Sensing

Author:

Wang Ruyan123,Zhang Shiqi123ORCID,Yang Zhigang123,Zhang Puning123,Wu Dapeng123,Lu Yongling4,Fedotov Alexander5

Affiliation:

1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing 400065, China

3. Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing 400065, China

4. State Grid Jiangsu Electric Power Company Ltd. Research Institute, Nanjing 211103, China

5. Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, St.Petersburg 195251, Russia

Abstract

In mobile crowd sensing (MCS), the cloud as a single sensing platform undertakes a large number of communication tasks, leading to the reduction of sensing task execution efficiency and the risk of loss and leakage of users’ private data. In this paper, we propose a spatial ciphertext aggregation scheme with collaborative verification of fog nodes. Firstly, the cloud and fog collaboration architecture is constructed. Fog nodes are introduced for data validation and slices transmission, reducing computing cost on the sensing platform. Secondly, a multipath transmission method of slice data is proposed, in which the user identity and data are transmitted anonymously by the secret sharing method, and the data integrity is guaranteed by hash chain authentication. Finally, a spatial data aggregation method based on privacy protection is presented. The ciphertext aggregation calculation of the sensing platform is realized through Paillier homomorphic encryption, and the problem of insufficient data coverage in the sensing region is solved by the position-based weight interpolation method. The security analysis demonstrates that the scheme can achieve the expected security goal. The simulation results show the feasibility and effectiveness of the proposed scheme.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3