An Apple Detection Method Based on Des-YOLO v4 Algorithm for Harvesting Robots in Complex Environment

Author:

Chen Wei12ORCID,Zhang Jingfeng1ORCID,Guo Biyu1,Wei Qingyu1,Zhu Zhiyu1

Affiliation:

1. School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212100, China

2. Jiangsu Maigao Information Technology Corporation, Zhenjiang 212002, China

Abstract

Real-time detection of apples in natural environment is a necessary condition for robots to pick apples automatically, and it is also a key technique for orchard yield prediction and fine management. To make the harvesting robots detect apples quickly and accurately in complex environment, a Des-YOLO v4 algorithm and a detection method of apples are proposed. Compared with the current mainstream detection algorithms, YOLO v4 has better detection performance. However, the complex network structure of YOLO v4 will reduce the picking efficiency of the robot. Therefore, a Des-YOLO structure is proposed, which reduces network parameters and improves the detection speed of the algorithm. In the training phase, the imbalance of positive and negative samples will cause false detection of apples. To solve the above problem, a class loss function based on AP-Loss (Average Precision Loss) is proposed to improve the accuracy of apple recognition. Traditional YOLO algorithm uses NMS (Nonmaximum Suppression) method to filter the prediction boxes, but NMS cannot detect the adjacent apples when they overlap each other. Therefore, Soft-NMS is used instead of NMS to solve the problem of missing detection, so as to improve the generalization of the algorithm. The proposed algorithm is tested on the self-made apple image data set. The results show that Des-YOLO v4 network has ideal features with a mAP (mean Average Precision) of apple detection of 97.13%, a recall rate of 90%, and a detection speed of 51 f/s. Compared with traditional network models such as YOLO v4 and Faster R-CNN, the Des-YOLO v4 can meet the accuracy and speed requirements of apple detection at the same time. Finally, the self-designed apple-harvesting robot is used to carry out the harvesting experiment. The experiment shows that the harvesting time is 8.7 seconds and the successful harvesting rate of the robot is 92.9%. Therefore, the proposed apple detection method has the advantages of higher recognition accuracy and faster recognition speed. It can provide new solutions for apple-harvesting robots and new ideas for smart agriculture.

Funder

Modern Agriculture Project of Jiangsu

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3